Recovery Mechanisms for Cyclic (Huff-n-Puff) Gas Injection in Unconventional Reservoirs: A Quantitative Evaluation Using Numerical Simulation

Author:

Hoffman B. Todd,Reichhardt David

Abstract

Unconventional reservoirs produce large volumes of oil; however, recovery factors are low. While enhanced oil recovery (EOR) with cyclic gas injection can increase recovery factors in unconventional reservoirs, the mechanisms responsible for additional recovery are not well understood. We examined cyclic gas injection recovery mechanisms in unconventional reservoirs including oil swelling, viscosity reduction, vaporization, and pressure support using a numerical flow model as functions of reservoir fluid gas–oil ratio (GOR), and we conducted a sensitivity analysis of the mechanisms to reservoir properties and injection conditions. All mechanisms studied contributed to the additional recovery, but their significance varied with GOR. Pressure support provides a small response for all fluid types. Vaporization plays a role for all fluids but is most important for gas condensate reservoirs. Oil swelling impacts low-GOR oils but diminishes for higher-GOR oil. Viscosity reduction plays a minor role for low-GOR cases. As matrix permeability and fracture surface area increase, the importance of gas injection decreases because of the increased primary oil production. Changes to gas injection conditions that increase injection maturity (longer injection times, higher injection rates, and smaller fracture areas) result in more free gas and, for these cases, vaporization becomes important. Recovery mechanisms for cyclic gas injection are now better understood and can be adapted to varying conditions within unconventional plays, resulting in better EOR designs and improved recovery.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference36 articles.

1. Integrated analysis of the Bakken petroleum system, U.S. Williston Basin. American Association of Petrloem Geologists Search and Discovery Article 10105http://www.searchanddiscovery.com/documents/2006/06035flannery/

2. Assessment of Hydrocarbon in Place and Recovery Factors in the Eagle Ford Shale Play

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3