Techno-Economic Assessment: Food Emulsion Waste Management

Author:

Lazaroiu George,Valaskova KatarinaORCID,Nica Elvira,Durana PavolORCID,Kral Pavol,Bartoš Petr,Maroušková Anna

Abstract

Production of food-grade emulsions is continuously rising globally, especially in developing countries. The steepest demand growth is in the segment of inexpensive meat products where edible emulsions serve as lubricants to mitigate economic loses linked with mechanical damage during automated processing of artificial casings. Provided that production goal is to minimize emulsion transfer into the product, its vast majority becomes voluminous greasy and sticky waste. Public sewage treatment plants cannot process such waste, its cleaning processes tends to collapse under loads of emulsions. To make matters worse, composition of emulsions often changes (according to actual pricing of main components) and emulsion manufacturers carefully guard their recipes. Therefore, running of in-house sewage plants would require continuous experimentation linked with need for skilled personnel, frequent changes in technology setup and high operating costs in general. Consequently, it was repeatedly and independently reported that emulsion waste is poured onto wildlife, resulting in environmental damage and an intense rotting odor. Three new methods of emulsion breakdown are proposed and techno-economically assessed. High versatility of methods was confirmed and multiple austerity measures were incorporated. Emulsions are also assessed in terms of an energy source for aerobic and anaerobic microorganisms. It is reported that the addition of edible emulsion to compost does not result in increased product quality or cost reduction. It is firstly revealed that edible emulsions can instantly create an anaerobic environment and accelerate biogas production through the formation of surface films on feedstock surface. Adding waste food-grade emulsions to the biogas plant makes it possible to 100% reduce process water consumption in biogas stations as the process speed can be shortened by approximately 12%.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3