Author:
Liu Bingchun,Zhao Shijie,Yu Xiaogang,Zhang Lei,Wang Qingshan
Abstract
Wind power generation is one of the renewable energy generation methods which maintains good momentum of development at present. However, its extremely intense intermittences and uncertainties bring great challenges to wind power integration and the stable operation of wind power grids. To achieve accurate prediction of wind power generation in China, a hybrid prediction model based on the combination of Wavelet Decomposition (WD) and Long Short-Term Memory neural network (LSTM) is constructed. Firstly, the nonstationary time series is decomposed into multidimensional components by WD, which can effectively reduce the volatility of the original time series and make them more stable and predictable. Then, the components of the original time series after WD are used as input variables of LSTM to predict the national wind power generation. Forty points were used, 80% as training samples and 20% as testing samples. The experimental results show that the MAPE of WD-LSTM is 5.831, performing better than other models in predicting wind power generation in China. In addition, the WD-LSTM model was used to predict the wind power generation in China under different development trends in the next two years.
Funder
Humanities and Social Science Fund of Ministry of Education of China
National Natural Science Foundation of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
54 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献