Adaptive Optical Closed-Loop Control on the Basis of Hyperparametric Optimization of Convolutional Neural Networks

Author:

Chen Bo1,Zhou Yilin1,Jia Jingjing1,Zhang Yirui1,Li Zhaoyi1

Affiliation:

1. Tangshan Key Laboratory of Advanced Testing and Control Technology, Laser and Spectrum Testing Technology Lab, School of Electrical Engineering, North China University of Science and Technology, No. 21, Bohai Road, Tangshan 063210, China

Abstract

In adaptive optics systems, the precision wavefront sensor determines the closed-loop correction effect. The accuracy of the wavefront sensor is severely reduced when light energy is weak, while the real-time performance of wavefront sensorless adaptive optics systems based on iterative algorithms is poor. The wavefront correction algorithm based on deep learning can directly obtain the aberration or correction voltage from the input image light intensity data with better real-time performance. Nevertheless, manually designing deep-learning models requires a multitude of repeated experiments to adjust many hyperparameters and increase the accuracy of the system. A wavefront sensorless system based on convolutional neural networks with automatic hyperparameter optimization was proposed to address the aforementioned issues, and networks known for their superior performance, such as ResNet and DenseNet, were constructed as constructed groups. The accuracy of the model was improved by over 26%, and there were fewer parameters in the proposed method, which was more accurate and efficient according to numerical simulations and experimental validation.

Funder

Natural Science Foundation of Hebei Province of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimizing MEMS Optical Arrays with Silicon Micro Mirrors using Machine Learning Techniques;2024 3rd International Conference on Computational Modelling, Simulation and Optimization (ICCMSO);2024-06-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3