Vision Transformers for Anomaly Detection and Localisation in Leather Surface Defect Classification Based on Low-Resolution Images and a Small Dataset

Author:

Smith Antony Douglas1,Du Shengzhi1ORCID,Kurien Anish1ORCID

Affiliation:

1. Department of Electrical Engineering, Faculty of Engineering and the Built Environment, Pretoria 0184, South Africa

Abstract

Genuine leather manufacturing is a multibillion-dollar industry that processes animal hides from varying types of animals such as sheep, alligator, goat, ostrich, crocodile, and cow. Due to the industry’s immense scale, there may be numerous unavoidable causes of damages, leading to surface defects that occur during both the manufacturing process and the bovine’s own lifespan. Owing to the heterogenous and manifold nature of leather surface characteristics, great difficulties can arise during the visual inspection of raw materials by human inspectors. To mitigate the industry’s challenges in the quality control process, this paper proposes the application of a modern vision transformer (ViT) architecture for the purposes of low-resolution image-based anomaly detection for defect localisation as a means of leather surface defect classification. Utilising the low-resolution defective and non-defective images found in the opensource Leather Defect detection and Classification dataset and higher-resolution MVTec AD anomaly benchmarking dataset, three configurations of the vision transformer and three deep learning (DL) knowledge transfer methods are compared in terms of performance metrics as well as in leather defect classification and anomaly localisation. Experiments show the proposed ViT method outperforms the light-weight state-of-the-art methods in the field in the aspect of classification accuracy. Besides the classification, the low computation load and low requirements for image resolution and size of training samples are also advantages of the proposed method.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference50 articles.

1. Fortune Business Insights (2023). Market Research Report, Fortune Business Insights. FBI104405.

2. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., and Gelly, S. (2020). An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. arXiv.

3. ImageNet classification with deep convolutional neural networks;Krizhevsky;Commun. ACM,2012

4. Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., and LeCun, Y. (2013). OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks. arXiv.

5. A Comprehensive Review of Image Segmentation Techniques;Abdulateef;Iraqi J. Electr. Electron. Eng.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3