Quadratic Curve Fitting-Based Image Edge Line Segment Detection: A Novel Methodology

Author:

Qiao Rui1,Xu Guili12,Wang Ping3,Cheng Yuehua1ORCID,Dong Wende1

Affiliation:

1. College of Automation, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China

2. Nondestructive Detection and Monitoring Technology for High Speed Transportation Facilities, Key Laboratory of Ministry of Industry and Information Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

3. College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou 730050, China

Abstract

In the field of computer vision, edge line segment detection in images is widely used in tasks such as 3D reconstruction and simultaneous localization and mapping. Currently, there are many algorithms that primarily focus on detecting straight line segments in undistorted images, but they do not perform well in detecting edge line segments in distorted images. To address this quandary, the present study introduces a novel method of line segment identification founded on the principles of quadratic fitting. The method proposed utilizes the inherent property of a linear projection in a three-dimensional space, whereby it appears as a quadratic curve in a distorted two-dimensional image. This approach applies an iterative estimation process to ascertain the optimal parameters of the quadratic form that aligns with the edge contour. This process is facilitated by implementing an assumption and validation mechanism. Upon deriving the optimal model, it is then employed to identify the line segments that are encompassed within the edge contour. The experimental assessment of this novel method incorporates its application to both distorted and distortion-free image datasets. The method eliminates the necessity for preliminary processing to discarding distortions, thereby making it universally applicable to both distorted and non-distorted images. In addition to this, the experimental results based on the dataset indicate that the proposed algorithm in this paper achieves an average computational efficiency that is 27 times faster than traditional ones. Thus, this research will contribute to line segment detection in computer vision.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference23 articles.

1. A statistical method for line segment detection;Xu;Comput. Vis. Image Underst.,2015

2. Using vanishing points for camera calibration;Caprile;Int. J. Comput. Vis.,1990

3. Solving the PnL problem using the hidden variable method: An accurate and efficient solution;Wang;Vis. Comput.,2022

4. Image dynamic matching for stereo vision based on structural information between lines;Cui;Control Decis.,2003

5. Linear-preserve-mesh warps in aerial image stitching;Liu;Control Decis.,2022

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3