Research on the Optimal Deployment of Expressway Roadside Units under the Fusion Perception of Intelligent Connected Vehicles

Author:

Wang Peng1,Lu Youfu2,Chen Ning3,Zhang Luyu1,Kong Weilin1,Wang Qingbin1,Qin Guizhi3,Mou Zhenhua1ORCID

Affiliation:

1. School of Transportation Engineering, Shandong Jianzhu University, Jinan 250101, China

2. Shandong Hispeed Grp Co., Ltd., Jinan 250098, China

3. Beijing Key Laboratory of Traffic Engineering, Beijing University of Technology, Beijing 100124, China

Abstract

At present, there is still a lack of relevant theoretical guidance on the deployment of roadside RSU on expressways. In the face of the coexistence of V2V and V2I communication in the future, the deployment adjustment after the penetration of intelligent vehicles is not considered. Therefore, this paper proposes a roadside RSU deployment income model in consideration of the influence of V2V and V2I communication. Based on the optimal income of roadside RSU nodes, it achieves the optimization of the RSU deployment range and determines the optimal deployment spacing through the forwarding and relaying role of V2V communication so as to achieve cost savings. In terms of RSU coverage of positive income, it considers the impact of intelligent vehicles and reconstructs the traditional information flow–traffic flow coupling theory to innovatively realize the modeling of income within the information life cycle. In terms of the information transmission deficit, the WSN node energy loss model is reconstructed with permeability. Also, in terms of the construction and maintenance costs, the cost models are constructed for different cluster lengths. In order to provide a basis for expressway sensor network deployment, MATLAB software (version R2016B) is used to analyze the three-dimensional relationship between expressway traffic density, intelligent vehicle permeability, and roadside RSU deployment spacing as well as to determine the optimal roadside RSU deployment spacing with the income model. Finally, the model reliability is validated by the Warshell algorithm and the Kmeans clustering algorithm.

Funder

Key Science and Technology Projects in the Transportation In-dustry of the Ministry of Transportation

Shandong Transportation Science and Technology Planning Project

Youth Innovation Science and technology support project in Colleges and Universities of Shandong Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3