Medical Named Entity Recognition Fusing Part-of-Speech and Stroke Features

Author:

Yi Fen1,Liu Hong1,Wang You2,Wu Sheng3,Sun Cheng4ORCID,Feng Peng3,Zhang Jin13ORCID

Affiliation:

1. College of Information Science and Engineering, Hunan Normal University, Changsha 410081, China

2. The State Key Laboratory of Industrial Control Technology, Institute of Cyber Systems and Control, Zhejiang University, Hangzhou 310027, China

3. School of Computer and Communication Engineering, Changsha University of Science and Technology, Changsha 410114, China

4. School of Mathematics and Statistics, Hunan Normal University, Changsha 410081, China

Abstract

It is highly significant from a research standpoint and a valuable practice to identify diseases, symptoms, drugs, examinations, and other medical entities in medical text data to support knowledge maps, question and answer systems, and other downstream tasks that can provide the public with knowledgeable answers. However, when contrasted with other languages like English, Chinese words lack a distinct dividing line, and medical entities have problems such as long length and multiple entity types nesting. Therefore, to address these issues, this study suggests a medical named entity recognition (NER) approach that combines part-of-speech and stroke features. First, the text is fed into the BERT pre-training model to get the semantic representation of the text, while the part-of-speech feature vector is obtained using the part-of-speech dictionary, and the stroke feature of the text is extracted through a convolution neural network (CNN). The word vector is then joined with the part-of-speech and stroke feature vectors, respectively, and input into the BiLSTM and CRF layer for training. Additionally, to balance the disparity in data volume across several types of entities, the class-weighted loss function is included in the loss function. According to the experimental findings, our model’s F1 score on the CCKS2019 dataset reaches 78.65%, and the recognition performance exceeds many existing algorithms.

Funder

Natural Science Foundation of Hunan Province

State Key Laboratory of Industrial Control Technology

National Defense Science and Technology Key Laboratory Fund Project

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3