Fuzzy Logic with Deep Learning for Detection of Skin Cancer

Author:

Singh Sumit Kumar1,Abolghasemi Vahid1ORCID,Anisi Mohammad Hossein1

Affiliation:

1. School of Computer Science & Electronic Engineering, University of Essex, Colchester CO4 3SQ, UK

Abstract

Melanoma is the deadliest type of cancerous cell, which is developed when melanocytes, melanin producing cell, starts its uncontrolled growth. If not detected and cured in its situ, it might decrease the chances of survival of patients. The diagnosis of a melanoma lesion is still a challenging task due to its visual similarities with benign lesions. In this paper, a fuzzy logic-based image segmentation along with a modified deep learning model is proposed for skin cancer detection. The highlight of the paper is its dermoscopic image enhancement using pre-processing techniques, infusion of mathematical logics, standard deviation methods, and the L-R fuzzy defuzzification method to enhance the results of segmentation. These pre-processing steps are developed to improve the visibility of lesion by removing artefacts such as hair follicles, dermoscopic scales, etc. Thereafter, the image is enhanced by histogram equalization method, and it is segmented by proposed method prior to performing the detection phase. The modified model employs a deep neural network algorithm, You Look Only Once (YOLO), which is established on the application of Deep convolutional neural network (DCNN) for detection of melanoma lesion from digital and dermoscopic lesion images. The YOLO model is composed of a series of DCNN layers we have added more depth by adding convolutional layer and residual connections. Moreover, we have introduced feature concatenation at different layers which combines multi-scale features. Our experimental results confirm that YOLO provides a better accuracy score and is faster than most of the pre-existing classifiers. The classifier is trained with 2000 and 8695 dermoscopic images from ISIC 2017 and ISIC 2018 datasets, whereas PH2 datasets along with both the previously mentioned datasets are used for testing the proposed algorithm.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference52 articles.

1. Studies of secondary melanoma on C57BL/6J mouse liver using 1H NMR metabolomics;Feng;Metabolites,2013

2. SKINcure: An Innovative Smartphone-Based Application to Assist in Melanoma Early Detection and Prevention;Abuzaghleh;Signal Image Process. Int. J.,2014

3. Kaufman, H.L. (2005). The Melanoma Book: A Complete Guide to Prevent and Treatment, Gotham Books.

4. Region extraction and classifcation of skin cancer: A heterogeneous framework of deep CNN features fusion and reduction;Saba;J. Med. Syst.,2019

5. American Cancer Society (2017). Cancer Facts and Figures 2017. Genes Dev., 21, 2525–2538.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3