Radio Link Model for Node Deployment in Underground Mine Sensor Networks

Author:

Shahid Saleem1ORCID,Zahra Hijab2,Qaisar Saad Bin3,Naqvi Ijaz Haider4,Abbas Syed Muzahir2ORCID,Mukhopadhyay Subhas2ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, Air University, Islamabad 44000, Pakistan

2. School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia

3. CoNNekT Lab, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan

4. School of Science and Engineering, Lahore University of Management Sciences (LUMS), Lahore 54792, Pakistan

Abstract

This paper presents an experimental characterization of the proposed radio link model for an underground mine sensor network. Power efficiency and range are critical factors to consider when designing a wireless sensor network, particularly for low data rate applications where the goal is to have a long-lasting, low-maintenance network. A ‘deploy and forget’ strategy is desirable because it allows the network to operate autonomously without requiring frequent maintenance or intervention from network operators. DASH7 and IEEE 802.15.4f are both excellent choices for low-power, long-range wireless sensor networking applications. The proposed radio link model was developed and evaluated for 433 MHz DASH7 in underground mines, considering the practical electromagnetic properties of mine walls and the propagation medium, which helps in calculating accurate signal characteristics. Radio wave propagation is a critical factor that needs to be considered when designing a wireless sensor network for complex mine structures. The received signal strength indicator (RSSI) and packet error rate (PER) are two key parameters that are used to measure wave propagation and assess the quality of the radio link between sensor nodes. The radio link design has been optimized for complex mine structures by utilizing these parameters in a model, leading to improved performance and reliability. The measurements were carried out in the world’s second largest salt mine at Khewra, Pakistan, with representative irregular mine structures. The RSSI and PER were measured at different node positions and with variable separation between the nodes. The proposed model allows for the easy placement of nodes on either the rooftop or near the side walls of the mine corridors, with an average variation of 6% in RSSI and 1.9% in PER. The proposed model was validated using off-the-shelf wizzi sensor nodes received from Wizzi Lab, France, and was programmed to measure RSSI and PER while operating under the 433 MHz DASH7 protocol. An agreement between modeled and measured parameters has been noted, making the proposed model a decent method for efficient node deployment in underground mine sensor networks.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3