HBTBD: A Heterogeneous Bitcoin Transaction Behavior Dataset for Anti-Money Laundering

Author:

Song Jialin1,Gu Yijun1

Affiliation:

1. School of Information Network Security, People’s Public Security University of China, Beijing 100032, China

Abstract

In this paper, we predict money laundering in Bitcoin transactions by leveraging a deep learning framework and incorporating more characteristics of Bitcoin transactions. We produced a dataset containing 46,045 Bitcoin transaction entities and 319,311 Bitcoin wallet addresses associated with them. We aggregated this information to form a heterogeneous graph dataset and propose three metapath representations around transaction entities, which enrich the characteristics of Bitcoin transactions. Then, we designed a metapath encoder and integrated it into a heterogeneous graph node embedding method. The experimental results indicate that our proposed framework significantly improves the accuracy of illicit Bitcoin transaction recognition compared with traditional methods. Therefore, our proposed framework is more conducive in detecting money laundering activities in Bitcoin transactions.

Funder

China People's Public Security University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference27 articles.

1. Countering money laundering and terrorist financing: A case for bitcoin regulation;Fletcher;Res. Int. Bus. Financ.,2021

2. Jiang, M., Liu, G., Su, Y., and Wu, X. (2021). GCN-SL: Graph Convolutional Networks with Structure Learning for Graphs under Heterophily. arXiv.

3. Liu, Y., Ao, X., Qin, Z., Chi, J., Feng, J., Yang, H., and He, Q. (2021, January 19–23). Pick and choose: A GNN-based imbalanced learning approach for fraud detection. Proceedings of the Web Conference 2021, Ljubljana, Slovenia.

4. Claudio Bellei, A. (2023, July 26). The Elliptic Data Set: Opening up Machine Learning on the blockchain.Medium (Aug.2019). Available online: https://medium.com/elliptic/the-elliptic-data-set-opening-up-machine-learning-on-the-blockchain-e0a343d99a14.

5. Translating embeddings for modeling multi-relational data;Bordes;Adv. Neural Inf. Process. Syst.,2013

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Explainable deep learning model for predicting money laundering transactions;International Journal on Smart Sensing and Intelligent Systems;2024-04-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3