XGBoost Prediction Model Optimized with Bayesian for the Compressive Strength of Eco-Friendly Concrete Containing Ground Granulated Blast Furnace Slag and Recycled Coarse Aggregate

Author:

Al-Taai Salwa R.1ORCID,Azize Noralhuda M.2,Thoeny Zainab Abdulrdha3ORCID,Imran Hamza4ORCID,Bernardo Luís F. A.5ORCID,Al-Khafaji Zainab6

Affiliation:

1. Department of Civil Engineering, Faculty of Engineering, Al-Mustansiriyah University, Baghdad 10052, Iraq

2. Department of Biology Science, College of Education for Girls, University of Thi-Qar, Nasiriya City 64001, Iraq

3. Department of Political Thought, Collage of Political Sciences, University of Baghdad, Baghdad 10071, Iraq

4. Department of Environmental Science, College of Energy and Environmental Science, Alkarkh University of Science, Baghdad 10081, Iraq

5. Department of Civil Engineering and Architecture, University of Beira Interior, 6201-001 Covilhã, Portugal

6. Department of Cooling and Air Conditioning Engineering, Imam Ja’afar Al-Sadiq University, Baghdad 10001, Iraq

Abstract

The construction industry has witnessed a substantial increase in the demand for eco-friendly and sustainable materials. Eco-friendly concrete containing Ground Granulated Blast Furnace Slag (GGBFS) and Recycled Coarse Aggregate (RCA) is such a material, which can contribute to a reduction in waste and promote environmental sustainability. Compressive strength is a crucial parameter in evaluating the performance of concrete. However, predicting the compressive strength of concrete containing GGBFS and RCA can be challenging. This study presents a novel XGBoost (eXtreme Gradient Boosting) prediction model for the compressive strength of eco-friendly concrete containing GGBFS and RCA, optimized using Bayesian optimization (BO). The model was trained on a comprehensive dataset consisting of several mix design parameters. The performance of the optimized XGBoost model was assessed using multiple evaluation metrics, including Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and coefficient of determination (R2). These metrics were calculated for both training and testing datasets to evaluate the model’s accuracy and generalization capabilities. The results demonstrated that the optimized XGBoost model outperformed other state-of-the-art machine learning models, such as Support Vector Regression (SVR), and K-nearest neighbors algorithm (KNN), in predicting the compressive strength of eco-friendly concrete containing GGBFS and RCA. An analysis using Partial Dependence Plots (PDP) was carried out to discern the influence of distinct input features on the compressive strength prediction. This PDP analysis highlighted the water-to-binder ratio, the age of the concrete, and the percentage of GGBFS used, as significant factors impacting the compressive strength of the eco-friendly concrete.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3