Study on the Deformation and Failure Characteristics of the Long Composite Insulated Cold Transmission Pipe in Deep Mines

Author:

Wang Wenlong1,Yue Fengtian2,Wei Jingsheng3,Gao Tao2,Qi Yanjun2

Affiliation:

1. State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221116, China

2. School of Mechanics and Civil Engineering, China University of Mining & Technology, Xuzhou 221116, China

3. School of Materials Science and Physics, China University of Mining & Technology, Xuzhou 221116, China

Abstract

To address the delamination and water leakage caused by the fracture of insulated chilled water pipeline (ICWP) in the process of long-distance drilling through deep strata, a new insulated cold transmission pipe with a composite structure was designed based on the actual project. The mechanical and deformation characteristics of the mortar materials of the different filling layers were investigated using uniaxial compression and Brazilian split tests. The distribution law of the maximum principal strain field on the surface during the test process was obtained by applying the digital image correlation method. Based on the experimental results, the finite-difference model was established and FLAC3D was used to analyze the stability of the long-distance composite structure ICWP under different stress conditions. The numerical results show that when the ground stress exceeds 12 MPa, the plastic damage occurs in the inner and outer filling layers of the ICWP. When the ground stress reaches 17.5 MPa, there is a small plastic zone in the cold transmission pipe, but the composite structure ICWP does not affect the regular operation of the pipe. Based on that, the mapping relationship for the plastic damage rate of the inner and outer filling mortar of the ICWP to the ground stress and the parameters of the insulation pipe was constructed to provide a theoretical basis for improving the deformation damage resistance characteristics of the composite structure ICWP.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3