Wave-Current Loads on a Super-Large-Diameter Pile in Deep Water: An Experimental Study

Author:

Hong Chenkai12ORCID,Lyu Zhongda2,Wang Fei2,Zhao Zhuo2,Wang Lei12ORCID

Affiliation:

1. Faculty of Mechanical Engineering & Mechanics, Ningbo University, Ningbo 315211, China

2. Zhejiang Engineering Technology Research Center for Civil Engineering Industrialized Construction, Ningbo University of Technology, Ningbo 315211, China

Abstract

Recently, the diameters and construction water depths of the pile foundations of planned and newly built sea-crossing bridges have been increasing greatly. Hydrodynamic loads are the key control factors in the design of super-large-diameter piles. However, most of the previous studies focused on the inline force on the pile with a small diameter, and there were few cases to consider the impact of the transverse force on the hydrodynamic load of the pile under wave-current actions. In this study, to understand the hydrodynamic loads on such deep-water super-large-diameter piles, the prototype was one of the 6.3-m piles used in the Xihoumen Rail-cum-Road Bridge, and 1:60-scale model tests were carried out in an experimental tank, with the actions of regular waves and waves combined with currents used as loads. The influence of the current velocity and static wave height on the inline and transverse forces on the pile was measured and analyzed. The experimental results indicate that with increasing current velocity, the fluctuation characteristics of the wave-current-induced inline and transverse forces change significantly, and their peak values increase obviously compared to those induced by only waves. In particular, the peak transverse force increases tens of times and can become equivalent to the inline force. The modified Morison formula and Kutta–Joukowski formula are used to derive the correlations between the drag coefficient CD, inertia coefficient CM, lift coefficient CL, and redefined Keulegan–Carpenter number KC*. Under wave-current action, the transverse force contributes quite significantly to the hydrodynamic load on a super-large-diameter pile, making it easier to trigger extreme structural loads. The results presented herein are an important reference for the engineering designs of such super-large-diameter piles.

Funder

Major Special Science and Technology Project of “Ningbo Science and Technology Innovation 2025”

Natural Science Foundation of Zhejiang Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3