Photoplethysmographic Signal-Diffusive Dynamics as a Mental-Stress Physiological Indicator Using Convolutional Neural Networks

Author:

de Pedro-Carracedo J.12ORCID,Clemente J.2ORCID,Fuentes-Jimenez D.3ORCID,Cabrera-Umpiérrez M. F.1ORCID,Gonzalez-Marcos A. P.1ORCID

Affiliation:

1. Life Supporting Technologies (LifeSTech), ETSI Telecomunicación, Universidad Politécnica de Madrid (UPM), E-28040 Madrid, Spain

2. Escuela Politécnica Superior, Departamento de Automática, Universidad de Alcalá (UAH), E-28871 Alcalá de Henares (Madrid), Spain

3. Escuela Politécnica Superior, Departamento de Electrónica, Universidad de Alcalá (UAH), E-28871 Alcalá de Henares (Madrid), Spain

Abstract

Stress is one of the primary triggers of serious pathologies (e.g., depression, obesity, heart attack). Prolonged exposure to it can lead to addictive substance consumption and even suicide, without ignoring other adverse side effects in the economic, work and family spheres. Early detection of stress would relax the pressure of medical practice exercised by the population affected and result in a healthier society with a more satisfying quality of life. In this work, a convolutional-neural-network (CNN) model is proposed to detect an individual’s stress state by analyzing the diffusive dynamics of the photoplethysmographic (PPG) signal. The characteristic (p,q)-planes of the 0–1 test serve as a framework to preprocess the PPG signals and feed the CNN with the dynamic information they supply to typify an individual’s stress level. The methodology follows CRISP-DM (Cross Industry Standard Process for Data Mining), which provides the typical steps in developing data-mining models. An adaptation of CRIPS-DM is applied, adding specific transitions between the usual stages of deep-learning models. The result is a CNN model whose performance amounts to 97% accuracy in diagnosing the stress level; it compares with other published results.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference84 articles.

1. Competitiveness and stress;Zhong;Int. Econ. Rev.,2018

2. The impact of stress on body function: A review;Yaribeygi;EXCLI J.,2017

3. Prevalence, Psychological Responses and Associated Correlates of Depression, Anxiety and Stress in a Global Population, During the Coronavirus Disease (COVID-19) Pandemic;Shah;Community Ment. Health J.,2020

4. World Health Organization (2023, February 14). Mental Health in the Workplace. Available online: https://www.who.int/teams/mental-health-and-substance-use/promotion-prevention/mental-health-in-the-workplace.

5. Chronic Stress, Drug Use and Vulnerability to Addiction;Sinha;Ann. N. Y. Acad. Sci.,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3