Design of a Four-Axis Robot Arm System Based on Machine Vision

Author:

Wang Yijie1,Zhou Yushan2,Wei Lai3,Li Ruiya4ORCID

Affiliation:

1. School of International Education, Wuhan University of Technology, Wuhan 430070, China

2. School of Automation, Wuhan University of Technology, Wuhan 430070, China

3. School of Information, Wuhan University of Technology, Wuhan 430070, China

4. School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China

Abstract

With the concept of industrial automation gradually being put forward, the four-axis robotic arm is gradually being applied in industrial production environments due to its advantages such as a stable structure, easy maintenance, and expandability. However, it is difficult to diversify and improve the traditional four-axis robotic arm system due to the high software and hardware coupling and the single system design, which results in high production costs. At the same time, its low intelligence and high-power consumption limit its wide application. The paper proposes an embedded design of a four-axis manipulator system based on vision guidance. Based on the robot kinematics theory and geometric principles, the dynamics simulation of the manipulator model is carried out. Through the forward and reverse analysis of the manipulator model and the trajectory planning of the manipulator, the YOLOV7 target detection algorithm is introduced and deployed on the embedded device, which greatly reduces the manufacturing cost of the manipulator while meeting the control and power consumption requirements. It has been verified by experiments that the robot arm in this paper can achieve an end accuracy of 0.05 mm under the condition of a load of 1 kg using the ISO 9283 international standard, and the recognition algorithm adopted can achieve a recognition accuracy of 95.2% at a frame rate of 29. The overall power consumption is also lower than that of traditional robotic arms.

Funder

2023 College Students Innovation and Entrepreneurship Training Program

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3