Characterizing Ambient Seismic Noise in an Urban Park Environment

Author:

Saadia Benjamin1,Fotopoulos Georgia1

Affiliation:

1. Department of Geological Sciences and Geological Engineering, Queen’s University, Kingston, ON K7L 3N6, Canada

Abstract

In this study, a method for characterizing ambient seismic noise in an urban park using a pair of Tromino3G+ seismographs simultaneously recording high-gain velocity along two axes (north-south and east-west) is presented. The motivation for this study is to provide design parameters for seismic surveys conducted at a site prior to the installation of long-term permanent seismographs. Ambient seismic noise refers to the coherent component of the measured signal that comes from uncontrolled, or passive sources (natural and anthropogenic). Applications of interest include geotechnical studies, modeling the seismic response of infrastructure, surface monitoring, noise mitigation, and urban activity monitoring, which may exploit the use of well-distributed seismograph stations within an area of interest, recording on a days-to-years scale. An ideal well-distributed array of seismographs may not be feasible for all sites and therefore, it is important to identify means for characterizing the ambient seismic noise in urban environments and limitations imposed with a reduced spatial distribution of stations, herein two stations. The developed workflow involves a continuous wavelet transform, peak detection, and event characterization. Events are classified by amplitude, frequency, occurrence time, source azimuth relative to the seismograph, duration, and bandwidth. Depending on the applications, results can guide seismograph selection (sampling frequency and sensitivity) and seismograph placement within the area of interest.

Funder

Natural Sciences and Engineering Research of Canada’s Discovery

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference47 articles.

1. Stein, S., and Wysession, M. (1991). An Introduction to Seismology, Earthquakes, and Earth Structure, Wiley.

2. Gupta, H.K. (2011). Encyclopedia of Solid Earth Geophysics, Springer.

3. Foti, S. (2015). Surface Wave Methods for Near-Surface Site Characterization, CRC Press.

4. Correlation Techniques—A Review;Anstey;Geophys. Prospect.,1964

5. The Detection of Low Magnitude Seismic Events Using Array-Based Waveform Correlation;Gibbons;Geophys. J. Int.,2006

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3