Automatic 3D Building Reconstruction from OpenStreetMap and LiDAR Using Convolutional Neural Networks

Author:

Barranquero Marcos1ORCID,Olmedo Alvaro1ORCID,Gómez Josefa1ORCID,Tayebi Abdelhamid1ORCID,Hellín Carlos Javier1ORCID,Saez de Adana Francisco1ORCID

Affiliation:

1. Computer Science Department, Universidad de Alcalá, 28801 Alcalá de Henares, Spain

Abstract

This paper presents the implementation of an automatic method for the reconstruction of 3D building maps. The core innovation of the proposed method is the supplementation of OpenStreetMap data with LiDAR data to reconstruct 3D urban environments automatically. The only input of the method is the area that needs to be reconstructed, defined by the enclosing points in terms of the latitude and longitude. First, area data are requested in OpenStreetMap format. However, there are certain buildings and geometries that are not fully received in OpenStreetMap files, such as information on roof types or the heights of buildings. To complete the information that is missing in the OpenStreetMap data, LiDAR data are read directly and analyzed using a convolutional neural network. The proposed approach shows that a model can be obtained with only a few samples of roof images from an urban area in Spain, and is capable of inferring roofs in other urban areas of Spain as well as other countries that were not used to train the model. The results allow us to identify a mean of 75.57% for height data and a mean of 38.81% for roof data. The finally inferred data are added to the 3D urban model, resulting in detailed and accurate 3D building maps. This work shows that the neural network is able to detect buildings that are not present in OpenStreetMap for which in LiDAR data are available. In future work, it would be interesting to compare the results of the proposed method with other approaches for generating 3D models from OSM and LiDAR data, such as point cloud segmentation or voxel-based approaches. Another area for future research could be the use of data augmentation techniques to increase the size and robustness of the training dataset.

Funder

Vice rectorate for Research and Knowledge Transfer of the University of Alcala and Comunidad de Madrid

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3