EEOA: Cost and Energy Efficient Task Scheduling in a Cloud-Fog Framework

Author:

Kumar M. Santhosh1ORCID,Karri Ganesh Reddy1ORCID

Affiliation:

1. School of Computer Science and Engineering, VIT-AP University, Amaravathi 522237, Andhra Pradesh, India

Abstract

Cloud-fog computing is a wide range of service environments created to provide quick, flexible services to customers, and the phenomenal growth of the Internet of Things (IoT) has produced an immense amount of data on a daily basis. To complete tasks and meet service-level agreement (SLA) commitments, the provider assigns appropriate resources and employs scheduling techniques to efficiently manage the execution of received IoT tasks in fog or cloud systems. The effectiveness of cloud services is directly impacted by some other important criteria, such as energy usage and cost, which are not taken into account by many of the existing methodologies. To resolve the aforementioned problems, an effective scheduling algorithm is required to schedule the heterogeneous workload and enhance the quality of service (QoS). Therefore, a nature-inspired multi-objective task scheduling algorithm called the electric earthworm optimization algorithm (EEOA) is proposed in this paper for IoT requests in a cloud-fog framework. This method was created using the combination of the earthworm optimization algorithm (EOA) and the electric fish optimization algorithm (EFO) to improve EFO’s potential to be exploited while looking for the best solution to the problem at hand. Concerning execution time, cost, makespan, and energy consumption, the suggested scheduling technique’s performance was assessed using significant instances of real-world workloads such as CEA-CURIE and HPC2N. Based on simulation results, our proposed approach improves efficiency by 89%, energy consumption by 94%, and total cost by 87% over existing algorithms for the scenarios considered using different benchmarks. Detailed simulations demonstrate that the suggested approach provides a superior scheduling scheme with better results than the existing scheduling techniques.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3