Abstract
Drivers’ road rage is among the main causes of road accidents. Each year, it contributes to more deaths and injuries globally. In this context, it is important to implement systems that can supervise drivers by monitoring their level of concentration during the entire driving process. In this paper, a module for Advanced Driver Assistance System is used to minimise the accidents caused by road rage, alerting the driver when a predetermined level of rage is reached, thus increasing the transportation safety. To create a system that is independent of both the orientation of the driver’s face and the lighting conditions of the cabin, the proposed algorithmic pipeline integrates face detection and facial expression classification algorithms capable of handling such non-ideal situations. Moreover, road rage of the driver is estimated through a decision-making strategy based on the temporal consistency of facial expressions classified as “anger” and “disgust”. Several experiments were executed to assess the performance on both a real context and three standard benchmark datasets, two of which containing non-frontal-view facial expression and one which includes facial expression recorded from participants during driving. Results obtained show that the proposed module is competent for road rage estimation through facial expression recognition on the condition of multi-pose and changing in lighting conditions, with the recognition rates that achieve state-of-art results on the selected datasets.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference68 articles.
1. American Driving Survey, 2014–2017 (Research Brief);Kim,2019
2. European Regional Status Report on Road Safetyhttps://www.euro.who.int/en/publications/abstracts/european-regional-status-report-on-road-safety-2019
3. Behavioural impacts of Advanced Driver Assistance Systems—An overview;Brookhuis;Eur. J. Transp. Infrastruct. Res.,2001
4. Automotive Technology and Human Factors Research: Past, Present, and Future
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献