Graph Adaptation Network with Domain-Specific Word Alignment for Cross-Domain Relation Extraction

Author:

Wang ZheORCID,Yan BoORCID,Wu ChunhuaORCID,Wu Bin,Wang XiujuanORCID,Zheng Kangfeng

Abstract

Cross-domain relation extraction has become an essential approach when target domain lacking labeled data. Most existing works adapted relation extraction models from the source domain to target domain through aligning sequential features, but failed to transfer non-local and non-sequential features such as word co-occurrence which are also critical for cross-domain relation extraction. To address this issue, in this paper, we propose a novel tripartite graph architecture to adapt non-local features when there is no labeled data in the target domain. The graph uses domain words as nodes to model the co-occurrence relation between domain-specific words and domain-independent words. Through graph convolutions on the tripartite graph, the information of domain-specific words is propagated so that the word representation can be fine-tuned to align domain-specific features. In addition, unlike the traditional graph structure, the weights of edges innovatively combine fixed weight and dynamic weight, to capture the global non-local features and avoid introducing noise to word representation. Experiments on three domains of ACE2005 datasets show that our method outperforms the state-of-the-art models by a big margin.

Funder

Beijing Natural Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3