Development and Validation of LiDAR Sensor Simulators Based on Parallel Raycasting

Author:

Gusmão Guilherme FerreiraORCID,Barbosa Carlos Roberto HallORCID,Raposo Alberto BarbosaORCID

Abstract

Three-dimensional (3D) imaging technologies have been increasingly explored in academia and the industrial sector, especially the ones yielding point clouds. However, obtaining these data can still be expensive and time-consuming, reducing the efficiency of procedures dependent on large datasets, such as the generation of data for machine learning training, forest canopy calculation, and subsea survey. A trending solution is developing simulators for imaging systems, performing the virtual scanning of the digital world, and generating synthetic point clouds from the targets. This work presents a guideline for the development of modular Light Detection and Ranging (LiDAR) system simulators based on parallel raycasting algorithms, with its sensor modeled by metrological parameters and error models. A procedure for calibrating the sensor is also presented, based on comparing with the measurements made by a commercial LiDAR sensor. The sensor simulator developed as a case study resulted in a robust generation of synthetic point clouds in different scenarios, enabling the creation of datasets for use in concept tests, combining real and virtual data, among other applications.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference35 articles.

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Role of Simulated Lidar Data for Training 3D Deep Learning Models: An Exhaustive Analysis;Journal of the Indian Society of Remote Sensing;2024-06-27

2. SimBusters: Bridging Simulation Gaps in Intelligent Vehicles Perception;2024 IEEE Intelligent Vehicles Symposium (IV);2024-06-02

3. A data-driven Model for Range Sensors;International Journal of Semantic Computing;2023-12-15

4. A Study of Multi-Beam Bathymetric Based on Geometric Intuition and Optimization Algorithms;2023 2nd International Conference on Automation, Robotics and Computer Engineering (ICARCE);2023-12-14

5. Continuous observations from horizontally pointing lidar, weather parameters and PM2.5: a pre-deployment assessment for monitoring radioactive dust in Fukushima, Japan;Atmospheric Measurement Techniques;2023-12-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3