Deep Learning for Non-Invasive Diagnosis of Nutrient Deficiencies in Sugar Beet Using RGB Images

Author:

Yi JinhuiORCID,Krusenbaum Lukas,Unger Paula,Hüging Hubert,Seidel Sabine J.,Schaaf GabrielORCID,Gall Juergen

Abstract

In order to enable timely actions to prevent major losses of crops caused by lack of nutrients and, hence, increase the potential yield throughout the growing season while at the same time prevent excess fertilization with detrimental environmental consequences, early, non-invasive, and on-site detection of nutrient deficiency is required. Current non-invasive methods for assessing the nutrient status of crops deal in most cases with nitrogen (N) deficiency only and optical sensors to diagnose N deficiency, such as chlorophyll meters or canopy reflectance sensors, do not monitor N, but instead measure changes in leaf spectral properties that may or may not be caused by N deficiency. In this work, we study how well nutrient deficiency symptoms can be recognized in RGB images of sugar beets. To this end, we collected the Deep Nutrient Deficiency for Sugar Beet (DND-SB) dataset, which contains 5648 images of sugar beets growing on a long-term fertilizer experiment with nutrient deficiency plots comprising N, phosphorous (P), and potassium (K) deficiency, as well as the omission of liming (Ca), full fertilization, and no fertilization at all. We use the dataset to analyse the performance of five convolutional neural networks for recognizing nutrient deficiency symptoms and discuss their limitations.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference48 articles.

1. Marschner’s Mineral Nutrition of Higher Plants;Marschner,2011

2. Handbook of Plant Nutrition;Barker,2015

3. Essential and Beneficial Trace Elements in Plants, and Their Transport in Roots: a Review

4. Soil Acidity and Liming;Adams,1990

5. Acid Soil and Acid Rain;Kennedy,1992

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3