Effect of Soil Texture on Water and Salt Transport in Freeze—Thaw Soil in the Shallow Groundwater Area

Author:

Wang Erqing1,Chen Junfeng1ORCID,Liu Lei1,Cui Lihong1,Xue Jing1,Ren Jiameng1,Du Qi2

Affiliation:

1. College of Water Resources and Engineering, Taiyuan University of Technology, Taiyuan 030024, China

2. Taigu Water Balance Experimental Field, Hydrology and Water Resources Survey Station of Shanxi Province, Jinzhong 030800, China

Abstract

Research on the variation in soil water, heat, and salt in unsaturated zones during the freeze–thaw process has great significance in efficiently utilizing water resources and preventing soil salinization. The freeze–thaw field experiment was carried out with the lysimeter as the test equipment to analyze characteristics of the soil freeze–thaw process, profile water content, main ion content, and salt content of three textured soils with the groundwater table depth of 0.5 m. The results showed that the soil temperature gradient and freezing depth were greater as the average soil particle size increased. The increment of water content at the depth of 0 to 30 cm in sandy loam and loamy sand decreased by 40.20~93.10% and 28.14~65.52% compared with that in sandy soil, and the average increment of salt content at the depth of 0 to 30 cm decreased as the average soil particle size increased during the freeze–thaw period. The average content of Ca2+, Na+, Cl−, and SO42− in loamy sand and sandy soil decreased by 4.37~45.50% and 22.60~70.42% compared with that in sandy loam at the end of the freeze–thaw period, and the correlation between soil salt content and water content decreased with the increase in the average soil particle size. The research results can provide a theoretical basis for soil salinization prevention and crop production in shallow groundwater areas.

Funder

National Natural Science Foundation of China

National Natural Youth Science Foundation of China

Natural Science Foundation of Shanxi Province, China

Natural Science Youth Foundation of Shanxi Province, China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3