Abstract
State of charge (SOC) estimation of lithium batteries is one of the most important unresolved problems in the field of electric vehicles. Due to the changeable working environment and numerous interference sources on vehicles, it is more difficult to estimate the SOC of batteries. Particle filter is not restricted by the Gaussian distribution of process noise and observation noise, so it is more suitable for the application of SOC estimation. Three main works are completed in this paper by taken LFP (lithium iron phosphate) battery as the research object. Firstly, the first-order equivalent circuit model is adapted in order to reduce the computational complexity of the algorithm. The accuracy of the model is improved by identifying the parameters of the models under different SOC and minimum quadratic fitting of the identification results. The simulation on MATLAB/Simulink shows that the average voltage error between the model simulation and test data was less than 24.3 mV. Secondly, the standard particle filter algorithm based on SIR (sequential importance resampling) is combined with the battery model on the MATLAB platform, and the estimating formula in recursive form is deduced. The test data show that the error of the standard particle filter algorithm is less than 4% and RMSE (root mean square error) is 0.0254. Thirdly, in order to improve estimation accuracy, the auxiliary particle filter algorithm is developed by redesigning the importance density function. The comparative experimental results of the same condition show that the maximum error can be reduced to less than 3.5% and RMSE is decreased to 0.0163, which shows that the auxiliary particle filter algorithm has higher estimation accuracy.
Funder
National Natural Science Foundation of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献