Polymerization Shrinkage, Hygroscopic Expansion, Elastic Modulus and Degree of Conversion of Different Composites for Dental Application

Author:

Borges Alexandre Luiz SoutoORCID,Dal Piva Amanda Maria de OliveiraORCID,Moecke Sabrina EliseORCID,de Morais Raquel CoutinhoORCID,Tribst João Paulo MendesORCID

Abstract

Objectives: To characterize the mechanical properties of different resin-composites for dental application. Methods: Thirteen universal dentin shade composites (n = 10) from different manufacturers were evaluated (4 Seasons, Grandio, Venus, Amelogen Plus, P90, Z350, Esthet-X, Amaris, Vita-l-escence, Natural-Look, Charisma, Z250 and Opallis). The polymerization shrinkage percentage was calculated using a video-image recording device (ACUVOL—Bisco Dental) and the hygroscopic expansion was measured after thermocycling aging in the same equipment. Equal volumes of material were used and, after 5 min of relaxation, baseline measurements were calculated with 18 J of energy delivered from the light-curing unit. Specimens were stored in a dry-dark environment for 24 h then thermocycled in distilled water (5–55 °C for 20,000 cycles) with volume measurement at each 5000 cycles. In addition, the pulse-excitatory method was applied to calculate the elastic modulus and Poisson ratio for each resin material and the degree of conversion was evaluated using Fourier transform infrared spectroscopy. Results: The ANOVA showed that all composite volumes were influenced by the number of cycles (α = 0.05). Volumes at 5 min post-polymerization (12.47 ± 0.08 cm3) were significantly lower than those at baseline (12.80 ± 0.09 cm3). With regard to the impact of aging, all resin materials showed a statistically significant increase in volume after 5000 cycles (13.04 ± 0.22 cm3). There was no statistical difference between volumes measured at the other cycle steps. The elastic modulus ranged from 22.15 to 10.06 GPa and the Poisson ratio from 0.54 to 0.22 with a significant difference between the evaluated materials (α = 0.05). The degree of conversion was higher than 60% for all evaluated resin composites.

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3