Author:
Solarino Giuseppe,Spinarelli Antonio,Virgilio Antonio,Simone Filippo,Baglioni Marco,Moretti Biagio
Abstract
Despite the fact that total hip replacement is one of the most successful surgical procedures for treatment of a variety of end-stage hip diseases, the process of osteolysis and implant loosening remains a significant problem, especially in young and high-demand patients. More than 40 years ago, ceramic bearings were introduced due to their mechanical advantage in order to obtain a reduction in wear debris, and due to the conviction that it was possible to minimize friction and wear owing to their mechanical hardness, high chemical stability, surface lubrication by fluids and low friction coefficient. Together with excellent mechanical properties, ceramics have a biological inertness: eventual ceramic debris will lead to a reactive response with a high predominance of fibrocystic cells, rather than macrophagic cells, and absence of giant cells, which is ideal from a biological perspective. As a consequence, they will not trigger the granulomatous reaction necessary to induce periprosthetic osteolysis, and this clearly appears to be of great clinical relevance. In recent years, tribology in manufacturing ceramic components has progressed with significant improvements, owing to the development of the latest generation of ceramic composites that allow for an increased material density and reduced grain size. Currently, ceramic-on-ceramic bearings are considered the attractive counterparts of ceramic- or metal-on-polyethylene ones for patients with a long life expectancy. The aim of this paper is to report the results of total hip replacements performed with a ceramic-on-ceramic articulation made from a ceramic composite in a single center, focusing on its usefulness in specific preoperative diagnosis.
Subject
Engineering (miscellaneous),Ceramics and Composites
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献