Abstract
Wood fiber reinforcement of plastics is almost limited to polypropylene, polyethylene, polyvinyl chloride and polystyrene. Wood fiber reinforcement of thermoplastic polyurethanes (TPU) is a new research field and paltry studied scientifically. Wood fiber reinforcement can carry out synergistic effects between sustainability, material or product price reduction, improved mechanical properties at high elongation, and brilliant appearance and haptics. In order to evaluate to what extent the improvement of mechanical properties depend on material-specific parameters (fiber type, fiber content) and on process-specific parameters (holding pressure, temperature control and injection speed), differently filled compounds were injection molded according to a partial factorial test plan and subjected to characterizing test procedures (tensile test, Shore hardness and notched impact test). Tensile strength showed significant dependence on barrel temperature, fiber type and interaction between holding pressure and barrel temperature in the region of interest. Young’s modulus can be influenced by fiber content but not by fiber type. Notched impact strength showed a significant influence of cylinder temperature, fiber content, fiber type and the interaction between cylinder temperature and fiber content in the region of interest. Shore hardness is related to fiber content and the interaction between mold temperature and injection flow rate. Our results show not only that wood-filled TPU can be processed very well by injection molding, but also that the mechanical properties depend significantly on temperature control in the injection-molding process. Moreover, considering the significant reinforcing effect of the wood fibers, a good fiber-matrix adhesion can be assumed.
Subject
Engineering (miscellaneous),Ceramics and Composites
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献