Predicting Urban Expansion and Urban Land Use Changes in Nakhon Ratchasima City Using A CA-Markov Model under Two Different Scenarios

Author:

Chotchaiwong ,Wijitkosum

Abstract

This study focused on the prediction of land-use changes in Nakhon Ratchasima city using a CA-Markov Model with GIS. Satellite images taken by Landsat-5 (1992), Landsat-7 (2002) and THEOS (2016) were used to predict land use in 2026. In 1992, the most proportion of land usage was built-up areas (47.76%) and followed by green areas (37.45%), bare lands (13.19%), and water bodies (1.60%), respectively. In 2002, the land use comprised built-up areas (56.04%), green areas (35.52%), bare lands (4.80%) and water bodies (3.63%). By 2016, urbanisation had changed the land use pattern, which comprised built-up areas (70.80%), green areas (20.78%), bare lands (6.37%), and water bodies (2.03%). The data were analysed using a change detection matrix and revealed an increase in built-up area at the expense of all other types, especially green areas. The results were in accordance with the prediction model created in two scenarios. Scenario 1 assumed city expansion following past trends, built-up areas (85.88%), green areas (11.67%), bare lands (2.15%), and water bodies (0.30%). Scenario 2 assumed city expansion in accordance with the national strategy, built-up areas (74.91%), green areas (15.77%), bare lands (8.48%), and water bodies (0.84%). The results indicated an expansion of built-up areas and a shrinking of green areas. In Scenario 2, urban expansion was less than in Scenario 1, and preserving the green area seemed more feasible due to governmental restrictions. The results indicated that planning the urbanisation according to the policies development plans, especially in specific areas, contributed to a more efficient urbanisation growth. The city should provide to promote the use of floor area ratio (FAR) and open space ratio (OSR) with urban planning measures as well as increasing the green areas.

Funder

Chulalongkorn University

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3