Anamorphic Site Index Curves for Central Appalachian Red Spruce in West Virginia, USA

Author:

Yetter Eric,Brown John,Chhin SophanORCID

Abstract

Traditional site index curves are frequently produced for shade-intolerant species but are scarce for shade-tolerant species. Red spruce (Picea rubens Sarg.) can be found in three distinct geographic regions (northern, central, and southern) within the Appalachian Mountains. The one commonly used set of red spruce site index curves is over ninety years old. A definite need exists for a modern, regionally applicable set of site index curves. This research sampled 83 plots randomly located in the central Appalachians of West Virginia. Three sets of anamorphic site index curves were created after careful examination of height models built using Chapman-Richards and Meyer functions. One set of curves was constructed with traditional age height pairs. The second utilized a suppression-corrected age and height pair. The third set examined diameter at breast height (DBH) and height pairs. Fit statistics indicated better performance for the suppression-corrected age–height pair site index and the DBH–height pair site index versus the traditional age–height pair models. Site index conversion equations were also investigated for the red spruce age-corrected site index. Linear regression was used to determine significant geographic and climate variables and the utility of including site index values for red maple (Acer rubrum L.) and yellow birch (Betula alleghaniensis Britton) in the model to predict red spruce site index. Significant models were found for varying combinations of species site index, climate, and geographic variables with R2adj in the range of 0.139–0.455. These new site index curves and conversion equations should provide utility for site productivity estimation and growth and yield modeling while aiding in restoration efforts for this important central Appalachian species.

Funder

Northern Research Station

National Institute of Food and Agriculture

Publisher

MDPI AG

Subject

Forestry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3