Nep1-like Proteins from Valsa mali Differentially Regulate Pathogen Virulence and Response to Abiotic Stresses

Author:

Liu JianyingORCID,Nie JiajunORCID,Chang Yali,Huang LiliORCID

Abstract

Necrosis and ethylene-inducing peptide 1(Nep1)-like protein (NLP) is well known for its cytotoxicity and immunogenicity on dicotyledonous, and it has attracted large attention due to its gene expansion and functional diversification in numerous phytopathogens. Here, two NLP family proteins, VmNLP1 and VmNLP2, were identified in the pathogenic fungus Valsa mali. We showed that VmNLP2 but not VmNLP1 induced cell death when transiently expressed in Nicotiana benthamiana. VmNLP2 was also shown to induce cell death in apple leaves via the treatment of the Escherichia coli-produced recombinant protein. VmNLP1 and VmNLP2 transcripts were drastically induced at the early stage of V. mali infection, whereas only VmNLP2 was shown to be essential for pathogen virulence. We also found that VmNLP1 and VmNLP2 are required for maintaining the integrity of cell membranes, and they differentially contribute to V. mali tolerance to salt- and osmo-stresses. Notably, multiple sequence alignment revealed that the second histidine (H) among the conserved heptapeptide (GHRHDWE) of VmNLP2 is mutated to tyrosine (Y). When this tyrosine (Y) was substituted by histidine (H), the variant displayed enhanced cytotoxicity in N. benthamiana, as well as enhanced virulence on apple leaves, suggesting that the virulence role of VmNLP2 probably correlates to its cytotoxicity activity. We further showed that the peptide among VmNLP2, called nlp25 (VmNLP2), triggered strong immune response in Arabidopsis thaliana. This work demonstrates that NLPs from V. mali involve multiple biological roles, and shed new light on how intricately complex the functions of NLP might be.

Funder

National Natural Science Foundation of China-Xinjiang Joint Fund

Major Scientific and Technological Projects of Shaanxi Province

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3