Abstract
The biosynthesis of cyclic tetrapyrrol chromophores such as heme, siroheme, and chlorophyll involves the formation of fluorescent porphyrin precursors or compounds, which become fluorescent after oxidation. To identify Ogataea polymorpha mutations affecting the final steps of heme or siroheme biosynthesis, we performed a search for clones with fluorescence characteristic of free base porphyrins. One of the obtained mutants was defective in the gene encoding a homologue of Saccharomyces cerevisiae Met8 responsible for the last two steps of siroheme synthesis. Same as the originally obtained mutation, the targeted inactivation of this gene in O. polymorpha and O. parapolymorpha led to increased porphyrin fluorescence and methionine auxotrophy. These features allow the easy isolation of Met8-defective mutants and can potentially be used to construct auxotrophic strains in various yeast species. Besides MET8, this approach also identified the HEM3 gene encoding porphobilinogen deaminase, whose increased dosage led to free base porphyrin accumulation.
Funder
Russian Foundation for Basic Research
Ministry of Science and Higher Education of the Russian Federation
Subject
Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献