Coding for Large-Scale Distributed Machine Learning

Author:

Xiao MingORCID,Skoglund MikaelORCID

Abstract

This article aims to give a comprehensive and rigorous review of the principles and recent development of coding for large-scale distributed machine learning (DML). With increasing data volumes and the pervasive deployment of sensors and computing machines, machine learning has become more distributed. Moreover, the involved computing nodes and data volumes for learning tasks have also increased significantly. For large-scale distributed learning systems, significant challenges have appeared in terms of delay, errors, efficiency, etc. To address the problems, various error-control or performance-boosting schemes have been proposed recently for different aspects, such as the duplication of computing nodes. More recently, error-control coding has been investigated for DML to improve reliability and efficiency. The benefits of coding for DML include high-efficiency, low complexity, etc. Despite the benefits and recent progress, however, there is still a lack of comprehensive survey on this topic, especially for large-scale learning. This paper seeks to introduce the theories and algorithms of coding for DML. For primal-based DML schemes, we first discuss the gradient coding with the optimal code distance. Then, we introduce random coding for gradient-based DML. For primal–dual-based DML, i.e., ADMM (alternating direction method of multipliers), we propose a separate coding method for two steps of distributed optimization. Then coding schemes for different steps are discussed. Finally, a few potential directions for future works are also given.

Funder

Swedish Research Council

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference47 articles.

1. A Survey on Large-Scale Machine Learning

2. MapReduce: Simplified data processing on large clusters;Dean;Proceedings of the 11th USENIX Symposium on Operating Systems Design and Implementation,2004

3. Scaling Distributed Machine Learning with the Parameter Server;Li;Proceedings of the 6th Symposium on Operating Systems Design and Implementation (OSDI),2014

4. Speeding Up Distributed Machine Learning Using Codes

5. Federated Optimization: Distributed Machine Learning for On-Device Intelligence;Konecny;arXiv,2016

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3