Abstract
The penetration of wearable devices in our daily lives is unstoppable. Although they are very popular, so far, these elements provide a limited range of services that are mostly focused on monitoring tasks such as fitness, activity, or health tracking. Besides, given their hardware and power constraints, wearable units are dependent on a master device, e.g., a smartphone, to make decisions or send the collected data to the cloud. However, a new wave of both communication and artificial intelligence (AI)-based technologies fuels the evolution of wearables to an upper level. Concretely, they are the low-power wide-area network (LPWAN) and tiny machine-learning (TinyML) technologies. This paper reviews and discusses these solutions, and explores the major implications and challenges of this technological transformation. Finally, the results of an experimental study are presented, analyzing (i) the long-range connectivity gained by a wearable device in a university campus scenario, thanks to the integration of LPWAN communications, and (ii) how complex the intelligence embedded in this wearable unit can be. This study shows the interesting characteristics brought by these state-of-the-art paradigms, concluding that a wide variety of novel services and applications will be supported by the next generation of wearables.
Funder
European Commission
Ministerio para la Transición Ecológica y el Reto Demográfico
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献