Time Evolution of the Skin–Electrode Interface Impedance under Different Skin Treatments

Author:

Murphy Brendan B.ORCID,Scheid Brittany H.ORCID,Hendricks Quincy,Apollo Nicholas V.,Litt Brian,Vitale Flavia

Abstract

A low and stable impedance at the skin–electrode interface is key to high-fidelity acquisition of biosignals, both acutely and in the long term. However, recording quality is highly variable due to the complex nature of human skin. Here, we present an experimental and modeling framework to investigate the interfacial impedance behavior, and describe how skin interventions affect its stability over time. To illustrate this approach, we report experimental measurements on the skin–electrode impedance using pre-gelled, clinical-grade electrodes in healthy human subjects recorded over 24 h following four skin treatments: (i) mechanical abrasion, (ii) chemical exfoliation, (iii) microporation, and (iv) no treatment. In the immediate post-treatment period, mechanical abrasion yields the lowest initial impedance, whereas the other treatments provide modest improvement compared to untreated skin. After 24 h, however, the impedance becomes more uniform across all groups (<20 kΩ at 10 Hz). The impedance data are fitted with an equivalent circuit model of the complete skin–electrode interface, clearly identifying skin-level versus electrode-level contributions to the overall impedance. Using this model, we systematically investigate how time and treatment affect the impedance response, and show that removal of the superficial epidermal layers is essential to achieving a low, long-term stable interface impedance.

Funder

National Institutes of Health

National Science Foundation Graduate Research Fellowship Program

National Institute of Neurological Disorders and Stroke

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Flexible-Center Hat Complete Electrode Model for EEG Forward Problem;IEEE Transactions on Biomedical Engineering;2024-08

2. Study and Analysis of Electrode, Electrolyte and Skin Interface with Emphasis on Overall Magnitude of Impedance;2024 International Conference on Advances in Modern Age Technologies for Health and Engineering Science (AMATHE);2024-05-16

3. Designing Unobtrusive Modulated Electrotactile Feedback on Fingertip Edge to Assist Blind and Low Vision (BLV) People in Comprehending Charts;Proceedings of the CHI Conference on Human Factors in Computing Systems;2024-05-11

4. Motion artefact management for soft bioelectronics;Nature Reviews Bioengineering;2024-04-15

5. Laser-induced graphene-coated wearable smart textile electrodes for biopotentials signal monitoring;Frontiers of Materials Science;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3