Process Optimization, Microstructure and Mechanical Properties of Wire Arc Additive Manufacturing of Aluminum Alloy by Using DP-GMAW Based on Response Surface Method

Author:

Du Wenbo1,Sun Guorui2,Li Yue3,Chen Chao2

Affiliation:

1. National Key Laboratory for Remanufacturing, Army Academy of Armored Forces, Beijing 100072, China

2. College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150040, China

3. Beijing Institute of Radio Measurement, Beijing 100039, China

Abstract

Double-pulsed gas metal arc welding (DP-GMAW) is a high-performance welding method with low porosity and high frequency. Periodic shrinkage and expansion of the melt pool during DP-GMAW leads to unusual remelting, and the re-solidification behavior of the weld metal can significantly refine the weld structure. The advantages of DP-GMAW have been proven. In order to better apply DP-GMAW to aluminum alloy arc additive manufacturing, in this paper, the single-pass deposition layer parameters (double-pulse amplitude, double-pulse frequency and travel speed) of DP-GMAW will be optimized using the response surface method (RSM) with the width, height, and penetration of the deposition layer as the response values to find the superior process parameters applicable to the additive manufacturing of aluminum alloy DP-GMAW. The results show that the aluminum alloy components made by DP-GMAW additive are well formed. Due to the stirring of double-pulse arc and the abnormal remelting and solidification of metal, the microstructures in the middle and top areas show disordered growth. The average ultimate tensile strength of the transverse tensile specimen of the member can reach 175.2 MPa, and the elongation is 10.355%.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3