Mathematical Model of Propagation of an Aerosol Created by an Impulse Method in Space

Author:

Kudryashova Olga1ORCID,Sokolov Sergei2ORCID,Vorozhtsov Alexander3

Affiliation:

1. Institute for Problems of Chemical and Energy Technologies, Siberian Branch of the Russian Academy of Sciences, St. Socialist, 1, 659322 Biysk, Russia

2. Laboratory of Metallurgy Nanotechnologies, National Research Tomsk State University, Lenin Avenue, 36, 634050 Tomsk, Russia

3. Laboratory for High Energy and Special Materials, National Research Tomsk State University, Lenin Avenue, 36, 634050 Tomsk, Russia

Abstract

When developing neutralization systems for harmful agents, it is necessary to understand the mechanisms of the formation and evolution of an aerosol cloud in a closed or open space. Effective decontamination with aerosol clouds is provided by a rather high particle concentration and dispersion in an open space or on contaminated surfaces. This paper considers neutralization systems based on pulsed powder aerosol generators. It is shown that an aerosol cloud consisting of micron- and submicron-sized particles appears for several seconds after spraying. A further evolution of the aerosol cloud in a room is associated with the gravitational settling, diffusion, and coagulation of particles and their settling on the walls and ceiling. In the case of an open space or a ventilation system in a room, the evolution of the aerosol cloud is affected by the airflow. The main purpose of this paper is to determine the most important parameters and critical conditions of pulsed aerosol generation. A mathematical model is, thus, proposed for pulsed aerosol generation, and its parametric study is conducted in the most typical conditions. The purpose performance predicted by the model is the mass concentration of aerosol particles in the air and on surfaces, depending on the time of particle spraying and dispersion.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3