Unsteady Separated Stagnation-Point Flow Past a Moving Plate with Suction Effect in Hybrid Nanofluid

Author:

Zainal Nurul AmiraORCID,Nazar Roslinda,Naganthran KohilavaniORCID,Pop Ioan

Abstract

Previous research has shown that incorporating stagnation-point flow in diverse manufacturing industries is beneficial due to its importance in thermal potency. Consequently, this research investigates the thermophysical properties of the unsteady separated stagnation-point flow past a moving plate by utilising a dual-type nanoparticle, namely a hybrid nanofluid. The impact of suction imposition on the entire hydrodynamic flow and heat transfer as well as the growth of boundary layers was also taken into account. A new mathematical hybrid nanofluid model is developed, and similarity solutions are obtained in the form of ordinary differential equations (ODEs). The bvp4c approach in MATLAB determines the reduced ODEs estimated solutions. The results show that increasing the stagnation strength parameters expands the skin friction coefficient and heat transfer rate. The addition of the suction parameter also resulted in an augmentation of thermal conductivity. Interestingly, reducing the unsteadiness parameter proportionately promotes heat-transfer performance. This significant involvement is noticeable in advancing industrial development, specifically in the manufacturing industries and operations systems.

Funder

National University of Malaysia

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference61 articles.

1. Grenzschichten in Flu¨ssigkeiten mit kleiner Reibung;Blasius;Z. Angew. Math. Phys.,1908

2. Unsteady boundary-layer separation;Sears,1972

3. Unsteady boundary-layer separation. Fluid dynamics of unsteady three- dimensional and separated flows;Sears,1971

4. Stretching or shrinking sheet problem for unsteady separated stagnation-point flow

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3