GATSMOTE: Improving Imbalanced Node Classification on Graphs via Attention and Homophily

Author:

Liu YongxuORCID,Zhang Zhi,Liu Yan,Zhu Yao

Abstract

In recent decades, non-invasive neuroimaging techniques and graph theories have enabled a better understanding of the structural patterns of the human brain at a macroscopic level. As one of the most widely used non-invasive techniques, an electroencephalogram (EEG) may collect non-neuronal signals from “bad channels”. Automatically detecting these bad channels represents an imbalanced classification task; research on the topic is rather limited. Because the human brain can be naturally modeled as a complex graph network based on its structural and functional characteristics, we seek to extend previous imbalanced node classification techniques to the bad-channel detection task. We specifically propose a novel edge generator considering the prominent small-world organization of the human brain network. We leverage the attention mechanism to adaptively calculate the weighted edge connections between each node and its neighboring nodes. Moreover, we follow the homophily assumption in graph theory to add edges between similar nodes. Adding new edges between nodes sharing identical labels shortens the path length, thus facilitating low-cost information messaging.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Manufacturing service capability prediction with Graph Neural Networks;Journal of Manufacturing Systems;2024-06

2. Balancing the Scales: HyperSMOTE for Enhanced Hypergraph Classification;2023 IEEE International Conference on Big Data (BigData);2023-12-15

3. DenseUNet+: A novel hybrid segmentation approach based on multi-modality images for brain tumor segmentation;Journal of King Saud University - Computer and Information Sciences;2023-09

4. Prediction and optimization of employee turnover intentions in enterprises based on unbalanced data;PLOS ONE;2023-08-17

5. A Kernel Propagation-Based Graph Convolutional Network Imbalanced Node Classification Model on Graph Data;2022 IEEE International Conference on Networking, Sensing and Control (ICNSC);2022-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3