Abstract
This paper examines the fault-tolerant control problem for discrete-time descriptor systems that are susceptible to intermittent actuator failures, nonlinear sensor data, and probability-based missing data. The discrete-time non-homogeneous Markov chain was adopted to describe the stochastic behavior of actuator faults. Moreover, Bernoulli-distributed stochastic variables with known conditional probabilities were employed to describe the practical features of random sensor non-linearity and missing data. In this study, the output signals were quantized and a dynamic output feedback controller was synthesized such that the closed-loop system was stochastically admissible and satisfied the strictly (Q,S,R)-γ-dissipative performance index. The theoretical developments are illustrated through numerical simulations of an infinite machine bus.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献