Remote Geotechnical Monitoring of a Buried Oil Pipeline

Author:

Vladova Alla Yu.ORCID

Abstract

Extensive but remote oil and gas fields in Canada and Russia require extremely long pipelines. Global warming and local anthropogenic effects drive the deepening of seasonal thawing of cryolithozone soils and enhance pathological processes such as frost heave, thermokarst, and thermal erosion. These processes lead to a reduction in the subgrade capacity of the soils, causing changes in the spatial position of the pipelines, consequently increasing the number of accidents. Oil operators are compelled to monitor the daily temperatures of unevenly heated soils along pipeline routes. However, they are confronted with the problem of separating anthropogenic heat losses from seasonal temperature fluctuations. To highlight heat losses, we propose a short-term prediction approach to a transformed multidimensional dataset. First, we define the temperature intervals according to the classification of permafrost to generate additional features that sharpen seasonal and permafrost conditions, as well as the timing of temperature measurement. Furthermore, linear and nonlinear uncorrelated features are extracted and scaled. The second step consists of selecting a training sample, learning, and adjusting the additive regression model. Forecasts are then made from the test sample to assess the accuracy of the model. The forecasting procedure is provided by the three-component model named Prophet. Prophet fits linear and nonlinear functions to define the trend component and Fourier series to define the seasonal component; the third component, responsible for the abnormal days (when the heating regime is changed for some reason), could be defined by an analyst. Preliminary statistical analysis shows that the subsurface frozen soils containing the oil pipeline are mostly unstable, especially in the autumn season. Based upon the values of the error metrics, it is determined that the most accurate forecast is obtained on a three-month uniform time grid.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Identifying potentially dangerous areas of frost heaving and surfacing of the buried oil pipeline;Journal of Infrastructure Intelligence and Resilience;2023-11

2. ASSESSMENT OF KARST-SUFFUSION HAZARD OF THE CHAYANDA–ESPO OIL PIPELINE IN YAKUTIA;Bulletin of the Tomsk Polytechnic University Geo Assets Engineering;2023-07-28

3. ОЦЕНКА ИНЖЕНЕРНО-ГЕОКРИОЛОГИЧЕСКИХ УСЛОВИЙ ТЕРРИТОРИИ ТРАССЫ ЭКСПЛУАТИРУЕМОГО ТРУБОПРОВОДА НА МЕЖДУРЕЧЬЕ МАЛХОЙЯХА–ПУР;Bulletin of the Tomsk Polytechnic University Geo Assets Engineering;2023-06-30

4. Statistical Analysis of Changes in Frozen Soil Surrounding an Oil Pipeline;2022 15th International Conference Management of large-scale system development (MLSD);2022-09-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3