On the Suitability of Bagging-Based Ensembles with Borderline Label Noise

Author:

Sáez José A.ORCID,Romero-Béjar José L.ORCID

Abstract

Real-world classification data usually contain noise, which can affect the accuracy of the models and their complexity. In this context, an interesting approach to reduce the effects of noise is building ensembles of classifiers, which traditionally have been credited with the ability to tackle difficult problems. Among the alternatives to build ensembles with noisy data, bagging has shown some potential in the specialized literature. However, existing works in this field are limited and only focus on the study of noise based on a random mislabeling, which is unlikely to occur in real-world applications. Recent research shows that other types of noise, such as that occurring at class boundaries, are more common and challenging for classification algorithms. This paper delves into the analysis of the usage of bagging techniques in these complex problems, in which noise affects the decision boundaries among classes. In order to investigate whether bagging is able to reduce the impact of borderline noise, an experimental study is carried out considering a large number of datasets with different noise levels, and several noise models and classification algorithms. The results obtained reflect that bagging obtains a better accuracy and robustness than the individual models with this complex type of noise. The highest improvements in average accuracy are around 2–4% and are generally found at medium-high noise levels (from 15–20% onwards). The partial consideration of noisy samples when creating the subsamples from the original training set in bagging can make it so that only some parts of the decision boundaries among classes are impaired when building each model, reducing the impact of noise in the global system.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3