Improved Deep Neural Network (IDNN) with SMO Algorithm for Enhancement of Third Zone Distance Relay under Power Swing Condition

Author:

Sriram CholletiORCID,Somlal JarupulaORCID,Goud B. SrikanthORCID,Bajaj MohitORCID,Elnaggar Mohamed F.ORCID,Kamel SalahORCID

Abstract

A zone 3 distance relay is utilized to provide remote backup protection in the event that the primary protection fails. However, under stressful situations such as severe loads, voltage, and transient instability, the danger of malfunction in distance relay is relatively high since it collapses the system’s stability and reliability. During maloperation, the relay does not function properly to operate the transmission line. To overcome this problem, an advanced power swing blocking scheme has been developed. An improved DNN-based power swing blocking system is proposed to avoid the maloperation of the distance relay and improve the system’s reliability. The current and voltage signal of the system is sensed, and the sensed data is fed into the Improved Discrete Wavelet Transform (IMDWT). The IMDWT generates the coefficient value of the sensed data and further computes the standard deviation (SD) from the coefficient, which is used to detect the condition of a system, such as normal or stressed. The SD value is given to the most valuable algorithm for the improved Deep Neural Network (IDNN). In the proposed work, the improved DNN operates in two modes, the first mode is RDL-1 (normal condition), and the second mode is RDL-2 (power swing condition). The performance of the IDNN is enhanced by using the threshold-based blocking approach. Based on the threshold value, the proposed method detects an appropriate condition of the system. The proposed method is implemented in the Western System Coordinating Council (WSCC) IEEE 9 bus system, and the results are validated in MATLAB/Simulink software. The overall accuracy of the proposed method is 97%. The proposed method provides rapid operation and detects the power swing condition to trip the distance relay.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3