Topology Optimization and Fatigue Life Estimation of Sustainable Medical Waste Shredder Blade

Author:

Azad Muhammad MuzammilORCID,Kim DohoonORCID,Khalid Salman,Kim Heung SooORCID

Abstract

There is an increased interest in designing cost-effective lightweight components to meet modern design requirements of improving cost and performance efficiency. This paper describes a significant effort to optimize the medical waste shredder blade through weight reduction by increasing material efficiency. The blade computer-aided design (CAD) model was produced through reverse engineering and converted to the finite element (FE) model to characterize von Mises stress and displacement. The obtained stress characteristics were introduced into the FE-SAFE for fatigue analysis. Furthermore, the FE model was analyzed through topological optimization using strain energy as the objective function while implementing the volume constraint. To obtain the optimal volume constraint for the blade model, several 3D numerical test cases were performed at various volume constraints. A significant weight reduction of 24.7% was observed for the 80% volume constraint (VC80). The FE analysis of optimal geometry indicated a 6 MPa decrease in the von Mises and a 14.5% increase in the fatigue life. Therefore, the proposed optimal design method demonstrated to be effective and easy to apply for the topology optimization of the shredder blade and has significantly decreased the structural weight without compromising the structural integrity and robustness.

Funder

Korea Environmental Industry and Technology Institute

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3