Abstract
The current study focuses on the natural-convection flow of nanofluids with boundary layer over a circular cylinder of uniform thermal wall with varying magnetic force from 0 to 1.5, radiative effects from 0 to 1, heat generation effects from 0 to 1, and Joule heating effects from 0 to 1. The problem is represented in the form of partial differential equations. The dimensional form of the equations is converted into a dimensionless form with the help of suitable stream functions. Then, the resultant equations are further reduced into the system of first-ordered differential equations, and the Keller box scheme is applied to obtain a solution numerically with the help of MATLAB code. The numerical solutions for Nusselt number, skin friction coefficient, Sherwood number, velocity profile, temperature profile, and concentration profile are represented with the help of graphs. The most interesting fact of the analysis is the flow of the fluid; the heat-mass and energy transfer rates could be managed in a controlled way through slight variations in the Brownian motion parameter from 0.1 to 0.7, in the Lewis number from 1 to 40, in the Eckert number from 0.1 to 0.4, in the thermophoresis parameter from 0.1 to 0.7, in the Prandtl number from 0.1 to 0.7, and in the buoyancy ratio from 0.1 to 0.7, as it is here analyzed and discussed.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Reference34 articles.
1. Grenzschichten in Flüssigkeiten Mit Kleiner Reibung;Blasius,1907
2. Free Convection Boundary Layers on Cylinders of Elliptic Cross Section
3. Mixed convection from a horizontal circular cylinder
4. Convective Heat Transfer: Mathematical and Computational Modelling of Viscous Fluids and Porous Media;Pop,2001
5. Free convection boundary layer flow on a horizontal circular cylinder in a nanofluid with viscous dissipation;Mohamed;Sains Malays.,2016
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献