Abstract
The development of mold films on the cement surfaces of buildings is a health and safety problem for the population, aesthetic but also in terms of their durability. The use of specific performance of cementitious composites containing TiO2 nanoparticles, photoactivated by UV radiation, can be a viable solution to mitigate to eliminate these problems. The experimental studies presented aim to analyze the capacity to inhibit the development of mold type Aspergillus and Penicillium on the surface of composite materials with nano-TiO2 content and the identification of the optimal range of nanomaterial addition. The identification and analysis of the inhibition halo (zone with a biological load of maximum 1–10 colonies of microorganisms) confirmed the biocidal capacity of the cementitious composites, but also indicated the possibility that an excess of TiO2 nanoparticles in the mixture could induce a development of cell resistance, which would be unfavorable both in terms of behavior and in terms of cost.
Subject
General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献