Microstructure and Properties of Electroless Ni-P/Si3N4 Nanocomposite Coatings Deposited on the AW-7075 Aluminum Alloy

Author:

Czapczyk KazimierzORCID,Zawadzki PawełORCID,Wierzbicka Natalia,Talar RafałORCID

Abstract

The article presents the results of mechanical and tribological tests of Ni-P/Si3N4 nanocomposite coatings deposited on the AW-7075 aluminum alloy using the chemical reduction method. The influence of the chemical composition on the Vickers microhardness determined by the DSI method was examined. The nanocomposite layers were made of Si3N4 silicon nitride in a polydisperse powder with a particle size ranging from 20 to 25 nm. The influence of the content of the dispersion layer material on the adhesion to the substrate was analyzed. The abrasive wear was tested and determined in the reciprocating motion using the “ball-on-flat” method. The surface topography was examined by the contact method with the use of a profilometer. Based on the obtained test results, it was found that the Ni-P/Si3N4 layers produced in the bath with the Si3N4 nanoparticle content in the amount of 2 g/dm3 are more resistant to wear and show greater adhesion than the Ni-P/Si3N4 layers deposited in the bath with 5 g/dm3 of the dispersion phase. NiP/Si3N4 layers provide protection against abrasive wear under various loads and environmental conditions.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3