Structure and Heat Transfer in Zircaloy-4 Treated at High Temperatures

Author:

Abrudeanu Mărioara,Dicu Maria Magdalena,Pasăre Maria Minodora

Abstract

Zircaloy-4 has an important role in the construction of generation III nuclear reactors. An important application is the fuel element sheath, which must have excellent corrosion resistance in the working environment, adequate mechanical characteristics and very good heat transfer properties from the combustible element to the coolant. The corrosion processes at high temperatures, the accidents that lead to significant increases in temperature and the structural transformations associated with them affect the heat transfer process. The paper presents research on the influence of high temperatures on the microstructure and thermal diffusivity of the zy-4 alloy. The samples were treated in air, at temperatures between 850 and 1050 °C for 60 min. The corrosion layers were characterized microstructurally and chemically. Furthermore, the transformations produced in the base material under the corrosion layer were analyzed. The values of thermal diffusivity were determined and correlated with the structural transformations. Considering the state of research on the materials appropriate to be used for new generation reactors, the current importance of third-generation reactors for energy systems and the fact that they will operate in the coming years, we consider that the study offers useful outcomes in the field of nuclear energy.

Publisher

MDPI AG

Subject

General Materials Science

Reference30 articles.

1. Nuclear Power Reactors in the World,2009

2. Nuclear Fuel Behaviour in Loss-of-Coolant Accident (LOCA) Conditions, State-of-the-Art Report No. 6846,2009

3. THE DESIGN FEATURES OF THE ADVANCED POWER REACTOR 1400

4. Development of passive flow controlling safety injection tank for APR1400

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3