Lithium Accumulation in Salvinia natans Free-Floating Aquatic Plant

Author:

Török Anamaria Iulia,Moldovan Ana,Kovacs EnikoORCID,Cadar OanaORCID,Becze Anca,Levei Erika AndreaORCID,Neag Emilia

Abstract

The new context of the intensive use of lithium-based batteries led to increased production of Li and Li-containing wastes. All these activities are potential sources of environmental pollution with Li. However, the negative impact of Li on ecosystems, its specific role in the plants’ development, uptake mechanism, and response to the induced stress are not fully understood. In this sense, the Li uptake and changes induced by Li exposure in the major and trace element contents, photosynthetic pigments, antioxidant activity, and elemental composition of Salvinia natans were also investigated. The results showed that Salvinia natans grown in Li-enriched nutrient solutions accumulated much higher Li contents than those grown in spring waters with a low Li content. However, the Li bioaccumulation factor in Salvinia natans grown in Li-enriched nutrient solutions was lower (13.3–29.5) than in spring waters (13.0–42.2). The plants exposed to high Li contents showed a decrease in their K and photosynthetic pigments content, while their total antioxidant activity did not change substantially.

Funder

Romanian National Core Program

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3