Abstract
The application of brick–concrete recycled aggregates can alleviate the problem of increasing construction waste and increasing scarcity of natural aggregates. The different moisture condition of coarse aggregates can significantly affect the performance of brick–concrete recycled aggregate concrete. In this paper, the additional water quantity of dry and air-dried brick–concrete recycled coarse aggregate concrete was determined. Additionally, the fluidity, rheological parameters, autogenous shrinkage, strength and chloride ion penetration resistance were tested, and compared with saturated surface dry recycled brick–concrete coarse aggregate concrete and natural aggregate concrete. The results showed that the slump of concrete was increased, whereas the plastic viscosity, static and dynamic yield stress were decreased by adding additional water or using saturated surface dry coarse aggregate. Compared with the dry and saturated surface dry state, the air-dried recycled coarse aggregate concrete has the smallest 28 days autogenous shrinkage value, higher compressive strength and splitting tensile strength, and less adverse effects on chloride permeability. It is most beneficial to the performance and economy of concrete to adopt the air-dried state when the brick–concrete recycled coarse aggregate is applied in engineering.
Funder
Housing Urban-Rural Construction Science and Technology Planning Projectfrom Shaanxi Province, China
Subject
General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献